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[Following iz the translation of an article
by Heli Changepen {1776 3854 2609}, of Tsing-
hua University, in Wu.ll Hslieh.pao (Journal
of Physics), Vol. 12, No., 4, July 1956,

PDe 281207

Abgtract

In this article, the general boundary relations for
a8 source-driven physical antenna are formilated in a strict-
1y Maxwelliian sense, Thersfrom, by invoking the limiting
condltion of infinite conduectivity for a lossless antenna,
wo arrive at a‘:slmpls radiation boundary relation which
brings forth the significance of the field expansions for a
non-radiating source and at the same time indicates the way
for a first order solution. Thls then characterizes the
formmlation of cur present boundary-value problem of a
"elosed system" and also differentistes itself from a dif-
fraction problem for an "open system" as far as Maxwell'ls
field is concerned. .

The formulation sppears rather unfamiliar at first
slight, but some reflections on the energy balance relation
in maecroscopic phenomena and ospecislly on Dirac's ireat-
ment of radiation damping of slection will help justify our
prosent argument, .

The first order solution for a source-driven finite
cylindrical antenna obbtained by uaing the simple radiation
boundary condition glves rise o a geometrical factor which
irdicates the condition of resonance of the system, The
necessary presedure to take into account the effect of ine
ternal impedance of a real anterna ig indicated; but,
thanks to the prineiple of guperposition, this modification
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doeg not chanpge the eszential feabures obtained for the
case of a lossless anbenna,.

1. Theory of Radiation Boundary Conditions

This article «- regarding the boundary conditions of
& source=-driven antenna -- is rather popular. In the sec-
ond znd third sectlions, we shall use a finite cylindrical
anterna to illustrate the theorstical ‘and practical appli-
cations., The importance of this theory of boundary condi-
tions can be explained as follows,

In the classical golution of antennae radiation
problems, we assume that the eslectrical current Yossesses
a sine curve distribution in the antenna and thus, we find
the radiation field. This method of solution is certainly
a crude approximation, since we do not consider how the
sine curve currert is produced or how it reacts in relaw
tisn to the encrsy source. In this ind of golution, the
matching impedance of the antenna and the energy source
are talzen care of individually accordineg to the iine theorvy,
In other words, we consider the closed system of "enerpgy
sourca-antenna~-snace” as two open systeris and, in solving,
we do not apnly Haxwellts Lblectro-magnetic Theory rigidly.
This sporoximation sirplifies the method of treatment and
proves tc be satisifactory for engineering apnlications,

In recent years, hLowever, the inereasingly wide
spread adoption of ultrs.short wave and microwave has
necessitabted further understanding of the mitaal interaca
tions of different currents on antennae and the precise
reactlion of enermy sources towards the cuarrent, If, ag
stated in the previous paragrarh, we nepglecet the finite
boundary conditionsz of the antenna, then it is not posaible
to have further undsrstanding (assuming also that the curw
rent has a sine curve distribution in the antenna), In
othier words, we must taie the anterma gystem as a boundary
valiue problem in conjunction with an exclted energy socurce,
Hence, a forced oscillation problem of a finite conductor
results, Since Maywell and Hertz, this question has been
observed in both theory and practice. Especially in more
recent years, the interest for research in this area has
been keener as the methods of analysis have become more
precise, DBut 1t has always been neglected and not dis-
tinetly distinguished, The forced oseillation of a con-
?nct?? can b? divided into two kinds, The first kind is
the diffraction question., The conductor, by absorbing
electro—magnetic eneray for the ineldent wave, produces
forced oscillation and then radlation., The energy source

of the incident waves is vevond the scope of our considergm
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tion, and is not infiuenced by the diffraction body. The
second problem is the one that we are to diseuss now. The
conductor {antenns) eombines direct wilth the energy source
and is excited, producing forced oscllilatlon, and radiates,
Hence, the energy source ls strongly reacted by the radia-
tion body. The many aspects of the diffraction question
have teen investipsted in detall by many authors, and their
findings are contained in many authoratative works, But
the problem that we are about to address ourselves to --
the radiation problem of the closed system of "energy
source-antenna-space’ . has never received the correct
theoretical development, This article may tell us the
importance and signiflcance of the two previous kinds,

411 in all, we can state that the diffraction problem is

an open system, one of the Kaxwell Electro.mognetic Fleld,
whersas the antenna radiation discussed in this article 1s
8, cloged system problen.

From the previous discussion, we know that the
toreed osclllation problem of a finite conductor is, in
fect, o closed system of Maxwelit!s Electro-magnetic Pield,
Tt consists of: 1) the source; 2) radiation anterma of
finite size; and, 3) infinitive, proximity space through
which the slectro-magnetic wave energy radiates outwerdly,.
In such & problem, it 1s a simple mabtter to flx the finlte
geometrical shape and boundary of the antenna conductor.
Fow to add snergy aourse into the antenna lg, however, not.
a simplie problem to solve, R, King and hls collaborators
have made a svatematic investigation of this aspect, Ac-
cording to the realitiss of physlics and engineering, and
the convenience of mathemabical caleulebions, we can as-
sume the following to be King'ls method: energy source 1s
& finite potential difference Vy added to a very small gap
in the middle of the antemnna., Diagram 1 represents an ex-
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Diagram 1. Gylindrical'Antenna Hodel.
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'ample of a cyiindrical antenna conduecvor, Since the energy
source gap 1s so snmall, the slectrical current in the two
halves of the antenna can be ccnsidered as continuous,

With the sabove shotemsnt and understanding, we can further
establish the formula of Haxwellls Bleetro-magnetic Field
in the two media of the antenna conductor and sxterior frae
space, DBscause no electro-magnetlc wave energy can be
transmitted to this systenm from oulside, 1t must be a
closed electro-magnetic Tisld system, ) ,

For clearer understanding, this problem mist adhere
rizidly to the significance of the Maxwellian Field Theory.
Let us look at the system of eguatione used by some authors,
In the antenna conductor media, thev use ’

. )
< < E; + ~§—t~ B =n, (a)
. a ? N
v x H;— -—a-;* D:-‘-“J; = oy (Ej+Ey) . (b} (1)
7 ‘B;-’—=0, (C)
v -Dy=p. (@)
v’-L~F€%q%==O. ' ()

Eys Dy, Hy, and By, are the electro-masnetic fisld PrO~
diced by induction current Jy and charze 4, on the conduce
tor. Iy is assumed to be the only field produced by the
eneray source, From the strictly Maxwellian Pield stande
point of the Iincompleteness and the inaprropriateness of
the equational system (1) are obvious, Fegerdless of how
the high-frequency ensrsy scurce is added to the anterma
conductor, it produces not only a field Ety, but also,
gimiltaneously, displacement current-ﬁLD’l and equivalent
magnetic fields H, and Bie According to the principle of
superposition, the conmplete Maxwellian KElectro-magnetic
Field equation system 1n the conductor dielectriec muist be:

vXE+ o Bi=0. vxE+ >B=0, ()
VX H +Hl =2 D+ D =h=alE+El. )
v-Bi=0. V'Bxsﬂ, ) (c) > (2)
v - D1+ Dy =p, (d)
v-h+~§;m-‘=ﬂ= ()
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we onn ﬁﬁf??itﬁ¢J Tind
BLﬁby and the Inductlon curvent and oha 'geg on thé sonduee
v frowm formiis (4}, Howsver, the inﬂftanue and meaning
of the usual beundary relation in (4) iz not in the mathew

mebical ltechnigue of anding the source fleld, but in the
basic eoncept of Inbterchanging action between the sourcs
fialﬁ and the inpdustion fleld, Using the 1deal limiting
nditiones of Infinitely lerpe eonductiviby of the conduce
“mrs wa can easily understand this concept, When the cone
duetivity (of a condustor) ig infinitely large, the elec.
tre-magnetic fleld in the conductor is equal to zero, and
forrmla (4} 1z slmplified seccording te the following fovm:

(4]




R Jrﬁ"‘f:’f‘thv % iS)
§ = {E;""Eﬂr' }

Since sénergy scurce and induction field are the cone
timuons runetiona of space and time, relations of formula
(5} are accurate not merely in boundary surfaces of two
dielectrics, but also at every point in the externs] frcs-
spacé, Thus, because the components of electro-megnetie
field have a singular nature, we can arrive at %the Tollow~
ing "nc loss" general reletions for an antenna:

Hy+H,=0, Ei+E=0. (6)

Henee, sourcs field and induction field 3imply can-
cel out each other in outer free-space, That is not to
say, however, that an excited "no loss" antenna does not
discharge radiation. As a matter of fach, according to
naturally logical results obtained from the Maxwell Field
Theory, 1t should be regarded as the equilibrium energy
relationship between emsrgy scurce and response. Similara
1y, in formula (4), in respect to an antenna with iimited
electrical conductivity, the energy source, besides PrO=
viding radistion snergy, also has a field to overcome the
internal lmpedance of sn antenna, Since the Maxwellian
equatlion implles the principle of energy squilibrium we
can, therefore . to boundery relationships sbtained by
closed systems of an erergy-included 2ource we imply the
same principle, From this, 1t cen be seen that our deri
vation and explanation above have not established any new
concept outside the Maxwellian system, Energy source field
Ets and H'g are mersly s mathematical guide fleld and ine
duction fileld Ep and Hy must resct according to its model,
This is the same as the Newtonian prinelple of "an equal,
and opposite, reasction for svery action". This is the
characteristic of the logleal derivation according to the
Maxwellian "elosed" theory, and tells us clearly that the
energy source provides merely radiation energy, but does
not itself produce radiation direetly, The actual radia-
tion source is the induction current having form on the
antenns, At the same time, the above derivation distin
guishes slearly the problem we are discussing at present
and general diffraction problems, In the diffraction pProb-
lem, the conductor receives electro-magnetic wave anergy
from an external energy source; hence, it 1s an open SY8m
tem == Jooking at it from the polnt of view of the Mexwolle
lan Field Theory, In the problem we are now discussing,
however, conductor absorbsa energy directly from the energy
source, and reacts to the energy source according to the
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geometric formz and phygical nroperties of that conductor,
while the energy source itself does not produce radiatione
Henes, regarding this from the abandpoint of the Maxwell-
fan Field Theory, "energy scurce-anterna-free spacs" does
eonstitute a elosed syabem, .

Therefore, formule (6] iz the general radiation
boundary relationship of a non-radistlion energy soirce
excitation for a "no loss” antenns, Because the energy
source does nobt produce an slectro.magnetle fleld in an
sdeal condustor anterma, the energy source field Efp and
Hig of outer f{res.space can be computed very easily from
the determined form of energy source., In the following
two gections, we will use this radiatlon boundary rela-
tionship, gslve the problem of a finlte eylindrical arlenw
na with an intermal ensrgy source pobentlsl dliTerence V.
be to the effenhs of the intsernal impedance inside the
antonne, we can 111 it up with sulbtable radlal distribu.
tion of the energy soures velbage, 4

. Having undsrabood the concept of this derivabion,
and the gharacter of meaning of the boundary relabtionships
of sn ideal "no loss" antenns, we can further find the
complete meaning of formals (4) for the aspplicablon of
fivite slechbrical conductiviby antennse, IJince the maesn
ing of the two equatiomns of relablonship {4} are the sems,
1t guffices 4f we only dlsouss the second eguation coneerhe
ing the fleld, From formules (5) and {6}, 1% can be ssen
that the radistion componsnts of Bl and Be exsebly asucel
out esach other, Hence, what rewaling c¢n the right sids of
formule (4} is omiy the "rasidual® of "lceal' fleld, Sup=
pose we let

B = Elpen + Eltsat >
(7)

EJ = Eg(m&) “ Eft(imnl) y

And, from formlae {B) and (8}, the radistion filelds are
naturally cancellied ocut: '

E;(md) “+ Eg(;my == §) (8)

Then, the second formuls in relationship (4) can be mach
simplifisd by the following form:

(Ef + Bl = [Eé(to@al} 4 Eatesaty b {9 }

From the two simultansous equetions in formmlee (8)
and (9}, 1 ths energy sourece fisld ls known theoretically,
theh we ¢an complebely dsbermine the readliation component
and the leesl sorponent of the induetlion fleld Epse Bulb,
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tnts method of finding a solution has two serious drawe
backs: first, even if the eneérgy sourcs voltage has very
simple antermae specifications in frec-spees, the electrow
magnetic fleld produced by the energy gource is still very
hazd to find; second, to solve the gimultaneous differen-
ttal equations of formilae (8) and (9), though not entire.
1y immpossible, it is very complicated. Because of these
aifficulties, we have to rely upon the simple radlation
boundary relationships of formilae (5) and (8), in order

to solve the radiation problems in outer freewspace in a
fno loss” antenna. Afterwards, we agaln uase the disturbance
method to calculste the effect of its internal impedance in
a "no loss" anterns.

Fpom what haz been described above, the deduced
phyaical meaning of our accurate derivation - ripe with
impilcations -- is also very important, Concerning the
fundamental concept of the production and the aetion of en-
ergy source fleld and induction field, with the exception
of what was discussed above, now this "closed derivation”
shows the mearnlng of intereffects between energy source
end induction. We ean limit the form of energy source, but
vefore knowing the mccurate reactlon function, we canmotb
1imit the expanded function of the field. They wist be in-
ternally compatible in the Maxwellian gystem, and conform
to the principle of linear superposition included in formi.
1ae (2) and (3). Naturally, this is the characteristic of
cloged deduction for any physical phenomenon. Einstein's
deductive Theory of Gensral Abtraction is an example, In
our present problem, as long &s the zctual space diselectric
has a 1ittle loss, then the energy field and reaction field
i1nteract and interhinge through the whole time-space sys-
tem, Hence, it is very difficult - almost impossible =
under the general conditions, to find the accurate equili-
brium state of energzy fleld and reactlon fleld in the Max.
welllan systam. Fertunately, under ideal limlting condi-
tions of "no loss" entenna and free space, we get very sim-

ple formulas of radiation boundary conditions, and their
golutions ars obvious.

(>

2, _Syrbols and Terms in Energy Source and Antennae Systems

For reference, ses Diagram 1 (page 3). Symbols and
terms used in this article can be deseribed ms follows!

DN, .sseo0sssonnssveslobal length of cylindrical antemma;
aoanu-pso:oooeoao.oradiUS of antenna}

booougoocaoooooacoothiCkﬂBSS of very thin cylindrical
gsurface layer -. high-frequency cur=




rent flows through thls thin layer,
R AR
Voussessnsroesasscweptlientlal difference of energy source
{(or thin-plate voltage source) of
. ciroular symmebtry;
(0, Pps Polsesscosesselil 18Yer b, comordinates of thine
- plate volbage source,f = aj :
(£s Cor FodowecsenseesnatOmordinate of cireular symmetry in
- duection eurrent in layer b,g = aj
{£s Ty Blosesosevostomordinate of observation point P;
(4 Fo: Polueesenasssacomordinate of points of the eyline
‘  drical~base charges Ql:h),A =a:
I(€)oeseecocecosenstverage induction current density in
layser b =~ 1ts equivalent volume
charge density is q3
Qlxh)cnsevossosossecaVerage base charge donsity;
& eseescsscsvssceTpOnEntial time cowefficlent;
B=oipe + jop o, eeDTOPagationsal conastant of dielectrie
{1) of the circular conductor!
B=wipe tjomen , ,propagationsl consbtant of dieleetric
{2) of cutside free-space;

Ry =[5 4+ gl = 27 g cos (@ = 0) + (2=03713,

distance from observation polnt P to
every electriec szourcs;

Ry == [#* 4 o} — 27 py cos (t?o*-‘ & + (=2~ C")-Z]i“:,

distance from obzervation point P to
every induction current

. 1
{10} 7 RZ = {?’2 -4 F%“‘Z#;ﬂ@ fatez: (@le. é‘)‘) . (zwé)"}f,

distanse from observation point P to
base charges QHh): :

Ey= (7 + g} — v pe co: (g ) 4 (2 + f:)z}%,

digtence from observation point P to
bage charge Q{-h);
{31) ally = ge=i J’&ff"fgffﬁ« ehale, B
expansion form of Hertz funetion for
svery component (£0,8 ,9.) of the
voltage source {sbout its derivation,
, ses Appendix);
gg}ﬁiﬁ@.ﬁi’ﬂ. ahals
"“i41f’0.?€2R1 " ’
expansion form for zll points of the
Hertz function of the induction cure
rent 1{%)dL.

(12) &R = g




Lot == jwprn=1(+8), ' - 18)
gf O(=h) == - ng(buh):~1(~‘lt)=-‘-1(»+/l),

the contimuity equation of base
charges Q(zh);

8”"”" Q(-}‘ﬁf) & Po d‘po eihRi 4 e..,'.‘,; Q('—}‘) b Po d?’o eik,R. =

dp = 476 Ry dme; R, {14)
it LCERY £00dP0 inm, o poies LCED) 620 8P0 o,

""‘i‘%ﬂ'aj&sz i47fw€2R3

the two base charges Q{xh) equive-
lent to the scalar potential funce
' tion for every point,
In this article, M.K.S. units are employed %o cale
culate all formulae and field quantities,

3. Thoory of Energy Source Excitation of a Finite Cvlin-
driecal Antenna, .

Disgram 1 shows a finite cylindrical antenna inside
of which there 1s a thin plaste of voltage source, Under
very high frequency, it can be proved that the current aw.
long the cylindrical axis is 1limited in a very thin sur-
face layer, Since our present interest is the investiga-
tion of high-frequency energy source excited antennae, we
can assume the thickness of that current surface layer to
be b, where b is mach smaller than the radius of the ¢yline.
der, a, Therefore, the distance Ybetween the thin cur-
rent layer and the cylinder axis, can be sald to be equal
to radius a, as indicated in the formulae in the second
section, Although the radisl current in the antenna 1is not
entirely equal to zero, it can be completely disregarded in
practical caleulation of radlation fields when compared
with the main axial current in layer b, Since axial cur-
rent is not absolutely equal to zero at the two bases of
the eylinder, we can nabturally assume that surface charges
ex1st on them, They also fulfill the equation of continutity
formmla (13) above, The simple model above accurately
represents the actual situation of a finite eylindrical
antemna under high-frequency energy excitation. At the
same time, it has singularness in the sense of ths Maxwelle
ian systenm,
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Disgram 2. Replon of Integration,

Now we can use the redlation boundary relationship
(6}, and the simple model indicated in Diagram 1, in order
to ealeuvlate the field components aslong the z axiz,

ATy
.

e
Waenis®

(B34l = S Ul ) o+ R3] = 2o o=
oz

3

-

where 11, ie¢ the tolal Heriz funsbion of %

I 12 the Hertz funsction produced by the density q of the
induction current and volums chargss, ¢ 3
scalar eleckrical potentisl produced by the chargss on the
two base surfaces, Sinsse the radial, or recomponsnt, of

the ield can be sccurstely ealeulated from its z=componant
uging Naxwell's field squabtion -- 1t will suffice if we
calevlate the gecomponent of formels (I85),.

' ‘The differential forms of the three functions Iigs-
IZ, and ¢ have besn exypressed in Tormulae (11), (i2), and
(14) == In the second seobion, Due to the fact that the
snergy source, Induction current and charges on baze sure
faces of the two halfwssctions of the antenns are anti.
symmetrical, we need only compute the Fileld elong the posi.
tive 2 axls. Diegram £ shows thres different Regions,
“ithin each replon, different potential functions must be
accurately expanded, The following is thelr derivation:

Ve sxpand the Hertz function 11y of the energy scurce
in the following menmers

kK 2 2 R
PR N O e
{3 L -

2rpo cos (Po—b) F (—0)2) o dh =




2 2 EM'J..(po VESTEY Y (VIE=R Y eree N e dh, r P

, (16)
54 f TG VST HY (g V=R Y e etak, o r s P

"

Substituting formula (16) into formula (11),; and integrabt-
ing with respect to @y from O to 2er,We get the Hertz func-
tion of total emergy source: '

T + = . e e fi |
(" io)j bpoJolpe VRE-E) HY V=) dh. 1 pad

Iy = {17)

’ + 2 ' . . . .

We expand ‘the Hertz function II of induction cur-
rent I(L)

ErL { + remarriom e e s e L L. e ’ .
r,R_' . ’7—_‘ H((,“ (\/kg__kz \/r’—]—pﬁ—-Z ¥ Po cos {(Pg—0Y+ 2= )P ettt {1 JA =
1 FA

-

S L[ LRy Y (VR et ek (18)

"

=4 5 Joo VST HY (o VEE—R ) entve=t etimhdd, < for

n

Substituting formula ,'(18) into formla {12), and integrat-
ing with respect to Py, we chtain '
e 2E4C r‘ b oo dolpe VRI=T) HY (¢ V=R =SV dd, 72> o '

n= The s I 1 (19)

e L5 § b oo dolr VIRV HY (oo VBB R) MoV dR, 7 < o
— €3 Jo=

in our present problem, We need only integrate
formila (19) 'in Region II with respect to %, and we have

1= e’“'( 1 )g«:x b oy Jo{Po ‘/E%:F) bt ‘ (20)

-2 82 ®

w H (G VIEZTE) dhe [ j" 1(£) cos AL dc]
We expand the sealar potentlal function ¢, produced
by the charges on the base surface
g = 'é‘f“ IV =T HY (VR R einiven? 1BTN AL, 1> P

oAk

Rz

| s (21)
E z ';'g” Jr VEIZTD HD (oo V1) emivem® 0T dh, 1 < Por
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(21} in formula (14), and integrating
¢ get the funetion ¢ in Region II

b= e«iut( . ﬁ) % b e Jolp VEI-E) X
T 8y -

| (22)
s Y G ViE—22y o [~ F(h) jsin Mb) 2R

Subgtitvuting formuiae {17), {20}, and {22) into radliation
boundery relationship (15}, we get the following 1dentical
sguation in Beglon II :

o — I

1§ b po dols VIS Y B GV IETTY dh e x

N N 1 einik (23)
X { (k33 E}‘ — L I(C) cos A 2 j 4 ﬁ’i; i’(iz)} =0.

In flegion I, we can also obbaln the same 1dentical
squation, but to integrate with respest to € is a very
complicated process, We will not diseuss 1f further here,
In squeation (23}, as long as the functional constant in the
braciket is zero, then formula {23) in the radistion field,
or on ths boundary, will in any case be completely ful-
filled, Eence, we have the following relationship

(24)

g ' fwe indh
U100 cos apag = J0282 0 g Al
) k=1

in which we cen compute the funetion I(Y) of current dis-
tribution for & "no loss" sntenns in & simple model ag &
shown in Diasgram 1. From the simple model of this antenna
in Disgram 1, we lkmow that I(L) 1s the even furmtion of A,
It must algo be the even funchion of R, for if I(¢) 13 the
odd funectlon of A, then the integration of the constant in.
duciion Herts funcbion I1 with respect to will meke IT

equsl zerc. From the shove, we can agsume the solution
of Lig} in fermils (24} to bs

o 2y V@

i{{) == T G{&} cos &( - o {25)

here G nust be on even Munotion of A, and is dimenstonw
less, Subgbibuting formuls {£5) into the two sides of
Tormuila {24}, while integrating with respeet to € , we get
the solution of G{AJ: : )

e 234 | Asin Ad 44 {28)
I B et et e B )
el 22k - 5in 2Ak Ei ki-<22 20k b sin2ak °F Ab] )

Eenes, {®} is actually the even function of % and A,
simultsnecuslys Here we should noties the following:
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formmla (25! 1s still the operational function of I{%),
its operational parameter isA, When we substitute I(%)
of formula (25) into formulae (20) and (22), and after in-
tegrating with respect to A, we get the algebraic solution
of iInduction potential funetlion. Substituting these II
and @ algebraic solutions,
» - & i
E=v9 - f-pmag—50-v :
2 a6 B¢ ¢ | 1 (27)

L
g—-B:""P:szv x(—gt—,«-ﬁ) # Hi=joev X, ;

we get the algebraic solution of field E§ and Hy of the
o

space dielectric, Flnally, from the following Simple
formula, . |
1(=) = 5 Haplowy, = 225 [ ] (28)

we got the algebraie solution of current distribution on
the antenna. The above procedurs for finding a solution is
the special characteristic of finding the integral over a
complex nurber surface {A~surface here) of any boundary
value problem., In our present problem, the harmonics, or
standing waves, caused by the finite boundaries of an an-
tenna conductor, will show its form only after the opera
tional form has echanged from inbtegral to algebralec form,

v From formula (28), after arriving at the current
distributional function, we can give the following definl-
tive relationship of the induetion point admittance or ime
pedance of a "no loas" antenna:

S.q (29)

P S L. ¥ XA s 12T Prw
"O - ZO - -‘,0 1(0} - V’o [

where ¥ and 24, respectively, are the induction admittance
and impedance of the energy source in the center of the ane
tenna, : '

Caleulation of II funstion in Reglon I. Now ws can
substitute I{%) in formula (25) into formuls (19}, and in.
tegrate in Region I with respect to%, since I{.'g,f (G,

We have only to caleulate the range of 0¢ z&h, equal to the
upper-half region of the antennaj and, in this z rangs,
the operational parameter mist have a positive imaginery
_number component.

r b iy w +A .
M=e (LN b oo i VB HP (VD 6 aa[ [0t con st =
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(o E, a 'gz ‘ z ‘ e 1 b (AL ] - .
= oe-s Bl d!EZ.é"z ﬁ"‘AA, d{;'}“z o .A'»” & "COsAC_d -
f &L> e,€ ﬂw C’:’) cOs 3“ (50)
% . X - a:;«)' e o .
= -g dA {ZCGS lzg {cos ALY JC} = -“ 2A {ifa-sggg.ﬂ:; 4o ghy 7,?,’:’)],.
; o . : !

The last two lines caﬁ ,bé"&btai‘néd fronm thaprcperti‘g?;; of ..
even and odd functions by integrating with resvect toA,
The factor in formuls {(30), '

Zomi ang Ag mn gl L peilizdwl) s

clearly polnts to the following: this Hertwy induced POt e
tial funebion or current is a standing wave s that is %o
38y, the malti.reflection waves of different Bigeu valuss
tox, dhis is spein just what we would expect to bs the
result, ez far as the sffect of the two flat base surfaces
of a "no loss" anbenns is concernsd, Since the integration
quantilty in formula (30}, with respect HoA., has an even .
functional property, the Assurfacs integral caleulation esn.
be written into the following form: : ' :

. i Vo 4""" , T L pscans -
o= c-wwf(-’:ﬁ-)gwtm Joloo VI HYY VT x  (31)

 2R%sip 20 }“i 2A
(R340 C2hh + on 205) :

% .»%f'“fiz -

As to the seslar potentlal funchtion #, caused by the eharges
en the twe bases, it has the follewing form: '

s AV NP, e frimye
# o= (“z}) { bbodelon Vi— ) HP (¢ V=T x (32)
s [?‘3& tsin 28k AL ]
A Y Ty, =y |

The integral quantity in formula {31) shows that we ean sdd
an infinitely large half-ecircumference on the upper-halifl
of theAs-surface, in order to makte 8 closed-curve integral,
without affecting fts result. As shown in Diagram 3 (see

next page) | y
= Ke = 4 (w8 Ant o fupg, )™
- 6,0

polnt is s branch point on the closed integral curve r,
but Azeley point should be outside of the closed curve v.
The al quantity of formula (31), except outside the
branch point Aes oy 3t111 has the following transcendental

15




equation

2% sin 20 : 28— (33)

LD @ty 0 B din 2= S,

the roots of whiech have numerous simple poles, We can very
easlly prove thatA=0 1s not a root of formula (33), and
that all its roots must have the positive and negative com-
ponert of complex numbers. Let Alys represent the different
complex roots of transcendental equation (33), and 1let Br
represent the'suitable brancheut from Ae+ky to infinity,
The integral result of formmula (31) can bé writter in the
following menner: , '

2= scevnofBensnns 2 sessnve Buvenea ' R,. AM 3
i .@r = e Bt 21} T, R () (34)

The R' s residues at different ANl,s poles all have a
negative expogential damping factor. That is why these
similar residue waves are really the localized waves cone
centrating at the energy source point (z=%x0), At points
on the antenna a bit too far away from the energy source
point (or surface), these residue waves become very weak
a8 a result of damping, Hence, at different points where
z%20 on the antenna, II ~. the main component of the in
tegral form . is integrated slong the branchecut, and these
resultant residue waves, R'ys, can be entirely disregarded
in the caleulation, But the accurate calculation of these

yd -3y N
,c\/ e ‘:‘\ \\
) B,
/T Westshan \
/ § \\ ,
| A Aotk l
- Ak, = o

Diagram 3, A_~surface Integral Curve,

brancheut integrals is s$i11 very complicated, So, in disw
cussing the following two conditions,

(next page)
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&)  Hon-hayrmonlc L, ke
conditions i thakFEa, o8 koo , |
b} Harmonic n=1,23, (35}
conditions i Db,k =, 6 b = fzz?f,@_ . R

We will use an appropriaste approzximation methed The A,
in formala (35), reopresents the wave length of energy waurcc
frequency in free space,

&) Nonsharwonic conditions. From formalae {31) and
(345, g%‘ from Dlagram 3, we note that when we ascend salong
the by ﬁ”huui Br, larger and larpger negative expotential
&%ﬂﬂing factors meke the resulting maln component of ths
ind: 1 sroroach ke fromi., in@u, in the vicinity of A
1 TEMOTS ‘vory slowly the fsetors In the variable

¥a 1 the Intepral signe mhua, we obtain
7 e pmion [ V0 B0 by 2Rs B ¥ sin 2y § (=) HD VETIEy e gn (36)
(Y sive 25, k& 1o
whove the term ,»gfﬁqr ew%_ﬁ in formula {31}, in the vi

einity g¢?hm»
forumis thng ¢
tepral algn, h
Br haeck ipto the
the following resu

23 cen bs tre « eonstante Jo=1, The

umﬁs hag already no 8 3ua?d@ the ire

ch, WS oap place Jha branch st integral
wal real bamb axls position, getting

a
-“; ;-%

e By AV G R ot g e

o

518 the lezt 1ins in the forwule 1= obbained from the
raves from Fouriers! Transformation,-at 0, and
y value of z, have egmsl econwergent properties, Heneco,
1t fs differenitiable with evespect Lo 2,

b) Harmonic conditions, Supposze we do not need &
re seeurate ealeulstion of formmls (31}, then under the
e ronle eonditions its selution, ﬁa%uva“ly, is also formi-
8 (& Bub, 1t 18 in hawwwﬂic state 2koh=nw; hencs,
ing term of ¢aeﬁ0r heeomas infinjteiy large:

Ao Mz(i‘.’? Esinany

2 7? in ner ’ (374)

P’g -‘




™:is simply shows the harmonic phenwuasnon of the
energy source frequency for this "™no loss" antenna system
in a vecuum, It ¢an bs seen that in this theory, in the
process of finding a solutlon using approximations this
important conclusion has not been missed., It 13 the har-
menic reaction of energy source of & cloasd system with
which the antenna and space are connsected, This well-
known phenomenon, and its engineering applications, have
anyhow its simple mathematlcal proof, here must exist
"no loss" conditions in the real unlverse space we are in,
and the discharged electro-magnetic wave ensrgy mist a2lso
be absorbed entirely or converted into another energy.
Hence, k% mist have & positive imaginery number component:

k= wlphya, + jwpyos:

where €5, =0, but, however, ig very small, So, the har-
monic factor in the above formula (37a), though very large,
will not beecome infinity, In our simple theory, the natural
appearance of the harmonic phenomenon of this closed sys-
tem -- "energy-antenna.space” - is very fortunate,

Caleulation of @ function caused by the charges on
the two bases, Similarly, in the integral of the scalar
potential funection & in formula (32), we arrive at the cut
radius integral which goes around the branch pointA=+ks,
and the poles of numercus Al'y,s complex numbers of formuia
{33). The residue waves obtained by the integral sur-
rounding these Alys poles actually disappear little by 1lit.
tle as they go away from the energy source {z=£0) on the
antenna, The main component of the integral is obtained
from the brancheut A=+k,. Using a method similar to the
previoua cne in calculaging the II funetion, we can obtain
the followling:

w peive [ TIVoO0E NGy & N[V (38)
p=e ( 222 /‘(h.}- 8x* {‘v‘r'-*}-z’]‘ .

This scalar potential function % has no harmonic phenomenon,

4, Derivation and Discussion of Some Immportant Formules,

Based on the caleulations of potential veetor II and
potential scalar @, derived from the last section, we can

2av§ quite a detalled discuasion on the following important
opicosgi ,

. 2 i
ie The expansion of (""%*‘a%f [t /P ) VL] =T (r,y 8)

18




Expanding the opevsiionsl diffdrentisl of T(r, 2}, we then
have

iR F B3t b, 2 1/ 37
T(r,2) = fRz {«%r-!-:%{l“éﬁ“ R *ér“l)} {89)

where R=af§2+32¢ Within the radiation boundary, when
L opesy, Z-peo, and R ~>es, only the first term in the bracket
of formla (39) Ls st1ll a finlte quantity; that is to savy,

2  (40)

T 2} = FAT ikek
) &{?, z) = "’"i‘é‘s *

Within the induction boundary, and espeelally on the sure
fare of the antenns of a2 conductor, the three terms in
formulis (39) cannct be disregarded in our ealoulations,

2. Anterme radiation energy and antenns efficiency.
Frem formila {27}, induced eleetric field and magnetic
field in free space have the follawing Torm!?

' by, & )
Bp={pt4 .2 Y. 2 4
2 (e;ﬁm aﬂzjzr 2 ¢
‘ F a8 (41)
By m ey n By
2 Y 4 3 @
Hpg= ~jwe, z—H

In ths following caleulation, for our later convenience,
we can propose the definition of the following "Geometrie
Earmonic Factor" g,(h):

i

#ik) = _ 2h% sin 22,4 E"zug g;;(ﬁ} (42)
(B = 2R2 Bt sin 28, 4
%A 2 sin 2Ry A

Substituting veetor II and secalar ¢ in formulae (37) and
(38), derived from the precesding ssction, into formula
(41), we can obtain the different components of the elesctro-
magnetic fleld of the rediation boundary: |

. (fsReews ¥ b - * re )
E:a &= fs(kﬁ " (“‘ O;jo"") ; j{(fi) “{Rfé “kg R } s

. skeut) ¥ ENT r? r3
By = R0 (w°§0 ;‘) —k&; g(4) R ~k; “ﬁ‘;] ) (43)

o e (Lamo2 3T iy 2]
Hp=e¢ | R T OR 2
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Within the radiation boundary, the average time value of
energy flow vector (Wulf-Poynting vector) is
S= LB xHi =1 (5B HE) +7 (~EuH +8],  (44)

4

Tts radial component 1s

s=-nan =P[R0 f i T (49)

Integrating Sy, over the surface of the infinite large
evlinder, we get the total radial energy flow Wr’

o e v ANES 2 ' o ' .
w= [ [sanea] =(RetY(EYgew [ [T ga) o (49

The second term of formula {(45) 1s the odd function z,
Therefore, 1ts integral 1s zero. This shows that the com-
ponent of Bgy, or Es, plus the second term of the formula,
brought about by charges on the two bottoms of the antenna,
does not actually produce radlation. This effect tells

us that the charges on the two bottoms are the incontimunity
of the locality of thiz antenna system., It merely affects
the induced electric field, Terforming the integraion of
formula (46), we get

a 1274/ 2 8s 35 8o 127 e L35V

where Po= (e, Vo2mpsd) = (pp27Psb)  represents the total
dipole moments of the source of voltage of the thin plate,.
The first term of formula (47) expresses the energy of
radlation of a dipole with finlte moment ¥, per second.
The gecond term 1s a dimensionless factor, It expresses the
radiation efficliency of this flnite cylindrical antenna
compared to the radiation of a lengthless dipole,

Taking the surface integral of S, over the two bot-
tom surfaces of the cylinder, ws get the total radial
energy flow along =% z.

W.z= {ﬁ:e {-+5) 27r1fdr] | +[5:o {(~5S,) 2;‘,,.‘1,.] =9. (48)

| - gt
This is precisely what we desire, Because of the antia

gymmetry of the voltage and Induction eurrent on the two
nalfwsections of the antenns, the total radial energy flow
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: (50) |
W W, W i |
where EERE *ﬁga{é}m% ';;.;’ff‘;;";m* | .
| o (81)

irepreqent the radietion of & Herbz dipole P,oe We can then|
 use 7 to represent the effieien@y of this antenna: '

- squal to oneequarter the wave~length mﬁ-/kg in free gpaos,
Lor some mulbiple of 1t, the effﬁpianpy‘th@p b@*ﬁm@a TELry-
‘high. It is also this ﬁam?@nn& and free space” system,
‘and the fregueney ¢f the source of sxternsl erergy which
 has rediation harmony. Previouz experience $s8lls us that
1t 12 correct both in prinsiple and throngh calznlablion %o
' view the simple theoram of energy ﬁa‘ﬂa@“p&aiteé entenna
a8 & real radiation boundary relationship. The sourcs of

- energy 1tself doss not &ir@ctly-r dﬁate, but has ?&diation
‘harmony with "anterme and free zhace’,

ﬁamﬁenna, Before dasfinlng Eigen radiation vresistence, we

?dateﬂmineé frﬁm tbe fu;lowing formila:

| 18 zers. T&Hinw raﬁiahiwuﬁ tﬁi@ pfava that tha a:wrnn@w%.
' of the dielectric B, of the antenna ia &isregardaﬁ in
. ealoulation,

We can ses [rom the sbovs thaet the tobal enargy rioﬁ
of the antenna radiation system is eamplately exyresse& byl
fcymula (é?). Suppose we let

(é@}'

When the halfmﬁangtn (mj of the sntenns is almost |

3, The Bigen radistion resistance of center sxclted

mast flrst ealeulate the radiation component of the current
in the antemna at z=%0, The letter is the brancheut ine
tegral 1n the IT funebion. From formulae (28),-(0?), and |
(39}, we get the following:

= Sieglne 2] o Fermt LB gy e (52)

O :
rdﬂ. -

Its effective value iﬁ-
o = ‘ |
:I ructe “;f;:‘“pe k; Eﬁ@) | o _ ( 83)

.!,

The definition of Eigen radiation’ reaistancé, Bra&’ can be
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W = (L pe)? Rusa - » o (54)

From formule (54), we get - o e

32 (88)

, i ,
Rpg = 5;5*; wa;ﬁ“ =% 3’%‘2; (120 7\‘) =2.109.7 ;
It is almost one-quarter the radiation resistance of fres
space to normal electro.magnetlic wave., From its defini-
tion, oms can see that it is really an Eigen resistance
with center-exeited antenna, and has no relationship to
the length of the antemna, ' -

4, The radiation resistence of center-excited an.
tenna exeltation point. The definition of exeltation
point radiation resistance is

I:‘.c.‘! Ripe == Va_- (56 }

Substituting In erp 0f formula (53) into the sbove formle,
we geb _ )
v2 L & &

w= Sty s (57)
We see from this that 1t varies as the two follow-
ing factors vary: geomebric harmonic factor g,(h) and
wave lengthwsectional factor Ay/g, b, Slneé the current
in the anterms varies according to this resiastance, it is
the radiation resistance of cylindrical antenna execitation
voltage, and the free space system, The two geometrical
factors above also revsal the importance of the geometric
structure of this sntexnns system, The higher fraquency
the external energy source excltes, or the shorter the ,
wave~length, the smallor will be this resistance, and the
more effective a radistor will be this antemns,  If the
frequency of external excitation is statlonary, thenm under
geometric harmonic eonditions {(g,(h) ~»=¢), the resistance
i1s the smallest and the radlation component of the eurrent
is the greastsst. As far as the strueture of a cylindrieal .
a?tenna is concerned, this relationaship is naturally ob-
TIOULSE, . . :
5, Distribution of the current radistion component
onn the anterna., From the fiprst term of the IT function
expansion of the current radiation ecomponent, the distria
buted portion on the anbenna has the following form:

(£ ' g
I,(!) = Vo 4r3 h go.‘}'} . P

G o VAR =B oy
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Just es we derived, it is esusl Bo the eriermal volbags Yot
however, its distribation has & very largs difference Foom
o real cosine curve dlstribution. h

. 6, Digtribation of total electric ecurrens on the
anterma. JIneluding the tobal current of & radiefion come
ponent and an induction component, 1ts distribution ean
be cbtainsed from the following eguation:

(55}

o= (L2BEY iy [ r6n] s
I(Z) = e~ f( iw 25 gai““} {5}* (i‘, ) =gy
where T(r, 2z} 1e expressed by formuls {z9), and
a8 _ aen [ AR AREsRr—2RY 43 f I
B T{r, ) = [ R4 + =5 + g (6{))
e 12 il{’gk‘zf"";iégfa . i5 }’:21‘ } .
’ R® -

where the radiabtion current component as expressed by
formila (58) is caleulated from the first term in formila
{80}, The obher three terms are ths induction componsents
of the current, At the proximity reglon of its antenns =«
sspecially on ths antenna boundary -« it is very important,
From this, we get the distribution eguatiocn of the airrerd

induetion compor.ant?

Vorplb "4k po—2kE D g , : :
1(2) = ““_Qf;zpjw o) [ RE % Po- R’;{z £ B + .
- ot | } . {81).
By 2* pg3 By M 15 #* T A T .
-} 12 jks = f;e 2Rl ‘”é?‘ﬁg“j cos (kz ‘/ﬂé'i"zz e —{) .

At the midenoint of ths antsnna st z=0, the ratioc of cur-.
rent induetion componer® to the radiation component 1is

Iy 1

Iy ke p@)a.yg'“3(é2 pof 4 (R ooy e¥irs | (62)
whore
e GO L

Tre resson that the phase angle ¥ is not exactly
squal ﬁf;“ﬂ%% is because the method of approximation is used
ir the brancheub integral celeulabion of ths II function.
Formule (82) tells us two imporbtant things: first, when

o3




ko Po¥l, a8 in ordinary cases, the valus of this ratlio lis
very large., JThat 1s to say, the radiation field geems to
be overhead of a very large induction field having s medium,
and then leaves the labtter and radiates out to free spacé
with the veloecity of light ¢. In all current measurements
along the antennsa, in fact, we merely measure out the in-
duction current componsnt sinee that very small phase
radiation component, or energy component, is completely
overpowered by the large induction component. Second, in -
order bto increase the eurrvent radiation component, or to
get out of the sntemna's radlatlion fleld, the only way 1s
to increase the cross-gsectional asrea or the radius of the
eylindrical antenna, . . .

7. Thse effects of impedance of an antenna, From
the antenna model Iin Diagram 1, 1t can be seen that the
radistion bonndary of every thin layer of current I(ﬁJ of
the conductor is the gsame, Suppogse the ehange of ensrgy.
gource In the radlal direction 1s in aceord with the wella’
known classical formuls of curvert and voltage distribution
in cylindrlical conductors.

Vo> VnJo(Pe"ﬁ"”ﬁ)/Jo(a‘/E:ﬁ),i’ (64)

Then, according to the mrineiple of supsrposition, we need
only substitute V b, in formla (11), I{{ib, in farmls
(12), and I(+h)b, in formuls {14}, into the following
formilas: :

(1) Vo b= Vo Jo (00 VEIZIT) m/Jo VE=EY, (5
(12} +h Iy 6 —> I(L) Jo (o0 ‘/E‘.rz“"lx ) dﬂc/;]o GVE-1), (66} ‘

() (R b —> To(+8) Jo (oo VEIZR) dpo /Jo @V (6

The aforementioned radiation bourdary relationships are
st1l1l fulfilleds In the three formulae above, ,
Ia(g)a=§h@ current volume density on the sconductor sur-
aces
1& zgg%,,lal-h 3@&16’ 19 in the antenna conducbor;

B kenp Pofors to the main propagational waves in a

eyllundrical conductor, o '

The potentiel functions IL ., II, and @, resulting
from formulae (17}, (20}, and (223, all have, in the ssnse
of #,, an extra inksgral from Po=0 to ° =e, The other
lerivation and generslization aPe complebely unaffected,

When & eylindrieal sntenns is supplied energy by a
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pate of transxlssicn lines of the same gquallty and radius,
%ha gbhove transformetion snd integration will describe very
gccurabely the effects of impedance in an sntenna, Detail.
ed caloulation ig very direct, snd it is simplified here.

Asgume that in the middle of the antemnns ws use
other methods of sgupplying energy then at z=%0, or at the
point of imput, the distribvuted function of voltage and :
current on the radius must be determined or described be-
forehand, Only then can we consider caleulation of the
effects and results of impedance in the antenna,

Avppendlx _
. Derivation of Hertz's differential funetion formula
(11) of energy source with volbage V. ,
- Vector potentlal A of dtAlembeért's squation .
'(.?'-zAmg"s—%;’A“’";’;‘jt | ,(&1); '

Using reasonable M.K.S. unlts to caleulate, the |

‘solubtion 1s

dﬁg\ ] ﬂmﬁéﬁ cf(&zkuu!);

wherse J{G) 1s along the Qecurrent volume denslty direction,
R is the distance from obsoervation point to volume element '
J{Cla a8, UThe equivalent definitive Formula of the Horby
IEG function 4is :

Bh=poi @) = ~jo sy, (A3) ¥
Conbining formulae (A2) and (a3), we obtain
mmdOLS s e

The current J(%} on length df expresses the opposite ;
charges on the two bottom surfaces, their relationships 1s -

KO =Eg=jag(). ~ (45)

‘Two opposite charges #qdS, s distance of .dQ apart, equi. .

velent to a capacitancs system, and possessing capaeliance

sdS N
ﬁj”fiff' N | (Aﬁ)t

Dividing d4C by qdS, we get & the twe terminals, the .
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voltage difference “%.fa s

Vo= 227 = adi o p L SO (A7)

N & ) & ¥ & R 3

where (2 wqd§ is the unit area's dipole moment. Substla-
tuting ?ormula (A7) inbo formula {(A4), we get :
My = ;,%%%’S, o tkR=wt) (48)

- 30, in a small space d%, the two terminals have the
energy sourcs of the voltage V,, equivalent to a similar
small space with a e¢lassical Hertz dipole. In the pra
ceading part of this thesls, we have uged this formula to
celeulate the expansion form of the energy source field,

10,400 ' END
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